
  

USING OPENCL TO INCREASE SCA APPLICATION PORTABILITY 

 

Steve Bernier (NordiaSoft, Gatineau, Québec, Canada; Steve.Bernier@NordiaSoft.com);  

François Lévesque (NordiaSoft, Gatineau, Québec, Canada; 

Francois.Levesque@NordiaSoft.com);  

Martin Phisel (NordiaSoft, Gatineau, Québec, Canada; Martin.Phisel@NordiaSoft.com); 

David Hagood (Aeroflex, Wichita, Kansas, USA; David.Hagood@Aeroflex.com); 
 

ABSTRACT 

 

The Software Communications Architecture (SCA) is the 

defacto standard to build Software Defined Radio (SDR) 

radios. Over one hundred thousand SCA military radios 

have been deployed worldwide by several nations. The SCA 

offers a component-based operating environment for 

heterogeneous embedded system that ensures applications 

are portable across platforms made of General Purpose 

Processors (GPPs) and Digital Signal Processors (DSPs).  

 

 The SCA offers a high level of portability for 

applications have been implemented for GPPs and DSPs. 

SCA components can easily be ported across different 

processors using different operating systems and 

communication buses. However, the level of portability is 

reduced when source code is tuned for specific instructions 

sets. Furthermore, using Field Programmable Gate Arrays 

(FPGAs) drastically reduces the level of portability for SCA 

components.  

 

 Specialized instruction sets are very widely used for 

high performance military radio platforms. Consequently, 

finding a solution to increase portability of components that 

run on such processing elements could provide significant 

cost reductions when an application is ported. In fact, 

application portability is the number one innovation on the 

top ten list of most wanted innovations compiled by the 

Wireless Innovation Forum (WInnF).  

 

 This paper describes how the Open Computing 

Language (OpenCL) can be used in conjunction with the 

SCA to build more portable applications. OpenCL is a 

framework for writing programs that execute across 

heterogeneous platforms consisting of GPPs, DSPs, FPGAs, 

and graphics processing units (GPUs). The paper starts with 

an overview of OpenCL, describes how SCA components 

can be built using OpenCL, provides performance metrics, 

and concludes on how the SCA could be improved to offer 

better support for OpenCL. 

 

1. INTRODUCTION 

 

The SCA was created to standardize how real-time 

embedded applications are implemented, packaged, 

installed, deployed, and controlled. The main goal of the 

SCA is to make applications very portable across different 

heterogeneous systems. It was created for the Joint Tactical 

Radio System (JTRS) program, a US DoD program that 

funded the development of a new kind of military radios: 

Software-Defined Radios (SDRs). The JTRS program 

started by funding the definition of a new standard called 

SCA and ended with the acquisition of SCA-compliant SDR 

military radios.  

 

 Software-Defined Radios are embedded systems that 

process a very large quantity of data in real-time. As such, in 

addition to embedded GPPs, SDR platforms often use DSPs 

and FPGAs as well. Thanks to the SCA, software can be 

made very portable even for embedded GPPs and DSPs. 

SCA components are typically made of control source code 

and signal processing source code. Portability of SCA 

components can be affected when the signal processing part 

is optimized for special instructions sets such as the 

Streaming SIMD Extensions (SSE) for Pentium processors, 

the AltiVec instructions for PowerPC processors, or the 

NEON instructions for ARM processors. 

 

 Furthermore, portability is very limited when FPGA 

firmware is used for signal processing. Different FPGAs 

offer different resources. Often firmware is designed to use 

specific resources (e.g. block RAMs, FIFOs, DSP blocks, 

multipliers) that vary from one FPGA manufacturer to 

another. Besides, the FPGAs of a single manufacturer can 

vary significantly from one model to another in terms of 

such resources. As such, portability has been the holy grail 

of FPGA firmware designers. It is a research topic that has 

received a lot of attention over the years. Thus far, no one 

solution have prevailed over the others. Over time, the SCA 

has improved some aspects of portability for applications 

that use FPGAs. It did so by standardizing how software 

components running on DSPs and GPPs can interact with 
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components that run on FPGAs. With that approach, 

firmware can be adapted or rewritten for new FPGAs 

without having a serious impact on the software it interacts 

with. Nevertheless, the SCA does not improve the portability 

of the actual FPGA firmware.  

 

 One of the popular approaches to improve portability of 

high performance signal processing source code is to use 

domain-specific accelerators. The approach consists in 

writing source code for widely available libraries of domain-

specific APIs that execute fast thanks to co-processors. 

Microsoft uses this approach with DirectX which offers a 

large number of functions that can be optimized to run on 

GPUs [1]. The same approach has also been used with 

FPGAs as co-processors [2, 3]. 

 

 While the concept of accelerators can increase 

portability, different APIs must be used for different type of 

processing elements (GPPs, DSPs, GPUs, FPGAs). Relying 

on different APIs adds complexity for designers of 

applications for heterogeneous embedded systems. It also 

prevents portability across different processing elements. 

 

 Open Computing Language (OpenCL) is a framework 

for implementing software components that can execute 

across different processing elements [4]. It allows a 

developer to implement a function in source code that can be 

compiled for GPPs, DSPs, GPUs, and FPGAs. The 

following sections of this paper provide an overview of 

OpenCL, describe how SCA components can be built using 

OpenCL, and provide performance metrics. The paper 

concludes on how the SCA could be improved to offer better 

support for OpenCL. 

 

2. THE OPEN COMPUTING LANGUAGE 

 

OpenCL is an open and royalty-free standard maintained by 

a non-profit technology consortium called the Khronos 

Group [5]. It has been created to allow high-performance 

applications to execute on various devices of different 

architectures implemented by different vendors. 

 

 OpenCL greatly improves performances for a wide 

range of applications by allowing task-based and data-based 

parallel programming. With OpenCL, a computing system is 

made of a number of compute devices connected to a host 

processor. Compute devices are GPPs, GPUs, DSPs, or 

FPGAs. The host processor is a GPP.  

 

 An OpenCL application is made of two parts: kernels 

and a host program. OpenCL kernels are routines 

(algorithms) performing the data processing. Kernels are 

implemented in a C-like language and executed on the 

compute devices. A single compute device typically consists 

of many individual processing elements (PEs) and a kernel 

can run on all or many of the PEs in parallel. The host 

program runs on the host processor and is implemented 

using an application programming interface (API) to launch 

kernels on the compute devices and manage device memory. 

The OpenCL standard defines host APIs for C and C++; 

third-party APIs also exist for other programming languages 

[6, 7, 8]. An OpenCL framework consists of a library that 

implements the host APIs, and an OpenCL compiler for the 

target compute device(s).  

 

2.1. Portability 

 

The goal of OpenCL is to allow high-performance 

applications to run on any hardware. It provides portability 

by allowing the same source code to be compiled for 

different target compute devices. Host programs are 

compiled using the C/C++ compiler and the appropriate 

library for host APIs. Kernel programs  can be pre-compiled 

for specific target compute devices before run-time. They 

can also be compiled on-the-fly at run-time for the required 

target devices.  

 

 OpenCL also extends C/C++ by providing standardized 

vector processing instructions and data types to exploit 

vector engines of the modern processors [9].  

 

3. USING OPENCL TO INCREASE PORTABILITY 

OF SCA APPLICATIONS 

 

SCA applications are made of one or many components that 

perform data processing. Every SCA component is made of 

configuration properties and ports to process data. 

Components also contain several implementations; one for 

each processing element it supports. For portable 

components, the different implementations are produced by 

building the same source code for the different processing 

elements.  

 

 For components that need to be optimized, the data 

processing source code needs to change significantly to 

exploit processor-specific instructions. The software part of 

a component that deals with control does not need to change 

much from one implementation to another.  

 

 However, using OpenCL, the data processing source 

code does not require any change to exploit the different 

processor architectures. In fact, OpenCL code can also be 

executed on FPGAs [10, 11]. OpenCL effectively reduces 

the development time required for a component to run on 

multiple processing elements including FPGAs. FPGA 

firmware is built using platform-specific features and 

requires very long development cycles. 
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3.1 A Simple Approach to using OpenCL with the SCA 

 

SCA applications are deployed on SCA platforms via the 

execution of their components. The SCA Core Framework 

chooses an implementation for each component and 

executes it using an SCA device. The choice of the SCA 

device is made by matching the requirements of the 

component implementations with the capabilities being 

advertised by the SCA device. For instance, a component 

that only has one implementation that requires an x86 

processor can only be executed by an SCA Device that 

advertises being capable of running x86 implementations. 

 

 Deploying a component implementation that uses 

OpenCL to perform signal processing works the same way 

as deploying a component that requires SSE or AltiVec 

instructions. The application component that is implemented 

using OpenCL simply needs to specify a requirement to be 

deployed on an SCA device that represents an OpenCL-

capable processing element. Such an SCA device must 

advertise capabilities that identify its capability to host 

OpenCL programs. 

 

4. CREATING AN OPENCL SCA COMPONENT 

 

Figure 1 shows the structure of a typical SCA component 

where data to be processed is received via an input port and 

sent, after the processing is performed, to another 

component via an output port. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of a typical SCA component. 

 

 The figure shows the distinction between the 

configuration and control code, and the data processing 

code. For an OpenCL SCA component, the host program is 

part of the configuration and control code, and the kernels 

are part of the data processing code. The kernels can 

potentially be executed on different compute devices (i.e. 

OpenCL-capable processing elements) when many compute 

devices are connected to the GPP where the host program 

runs. OpenCL provides APIs to list platform and compute 

device information, to obtain the identifiers for compute 

devices, and to specify which device should be used to 

execute kernels. One single SCA device can therefore load 

and execute kernels on any compute device connected to the 

GPP where the SCA device runs.  

 

 Typically, the source code for a kernel is located in a 

separate file from the OpenCL program source file. The 

OpenCL API offers several ways to create a program from 

which kernels are instantiated. A program can be created 

from a buffer containing program source code, from a buffer 

containing the program binaries, either in binary format 

specific to a device or in an intermediate representation that 

will be converted to the device-specific code format. The 

appropriate format is selected based on the level of 

portability and performance needed for an application. 

 

 For the SCA, this means the kernel files are not 

embedded in the source file for the SCA component 

implementation itself. The way to model this with the SCA 

is to define a software dependency between the SCA 

component implementation and the OpenCL kernel files it 

uses. Doing so will cause the SCA Core Framework to load 

the kernel files on the same SCA device used to execute the 

SCA component implementation. 

 

4.1. Loading the kernels 

 

Once an SCA component start running, it must load the 

kernels and instantiate them before the data processing 

starts. In our experiments, the kernel creation was done from 

during the initialization of the SCA application component 

(i.e. LifeCycle::initialize()). Kernel creation involves 

initializing OpenCL, listing and selecting compute devices, 

loading kernel files, and creating the kernels. This is all done 

using OpenCL APIs which makes calls to device drivers.  

 

 To be more portable, it is forbidden for SCA 

application components to make calls to native device 

drivers. However, just like applications are allowed to use 

several POSIX APIs, the SCA specification should allow 

OpenCL APIs since this standard is broadly supported 

across different types of processing elements. Alternatively, 

it would be possible to create an SCA-level API that SCA 

devices could implement for application components to use. 

This would prevent implementations of application 

component from being compiled and linked against native 

device drivers.  

 

4.2. The Data Flow 

 

OpenCL kernels use compute device memory to get input 

data and provide output data. The host program is 

responsible for creating compute device memory to be used 

by the kernels. The host is also responsible for copying data 

from its memory to the compute device memory and vice-

versa if it is required. 

 

Output Port Input Port 

Configuration and 

control code 

Data processing code 
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 SCA components usually receive and send data through 

ports. This means the data is in the memory of the host 

processor. Therefore, the input data received by an input 

port must be copied into the OpenCL compute device 

memory (H2D) before executing a kernel, and the output 

data produced by a kernel must be copied from the compute 

device memory to the host memory (D2H), after a kernel has 

executed. Figure 2 shows the data flow for every sequence 

of data being processed by an OpenCL SCA component. 

Figure 2. Data flow of data processed by an OpenCL SCA 

component. 

 

 Copying data between different memories affect the 

overall data processing performance. Copy of data can be 

avoided when the compute device is a CPU since the 

memory of the device is the same as the host. But, when the 

compute device is not a CPU then data must be copied. We 

have collected some metrics regarding this topic that will be 

presented in the next section. 

 

5. METRICS 

 

In this section, we discuss some metrics that can impact the 

performance of data processing using OpenCL. We also 

suggest solutions or research areas to address the issue we 

identify. To perform our experimentation, we used a desktop 

computer with an Intel i7-4770 CPU with 8 cores clocked at 

3.40 GHz, 4GB of memory. We used the 64 bits version of 

Fedora 20 with the Linux kernel version 3.11.10-301. As for 

OpenCL, we used two compute devices. The first one was 

the CPU device of the Intel OpenCL platform with OpenCL 

1.2. The second OpenCL device was PCI-E 3.0 NVIDIA 

GeForce GT 635 GPU using the NVIDIA OpenCL CUDA 

7.0.41 platform with OpenCL1.1. 

 

5.1 OpenCL Program Format 

 

In section 2.1, we described that OpenCL brings portability 

by allowing the same source code to be compiled and 

executed for various compute devices with different 

hardware architecture. Building every kernel a head of time 

and packaging the binaries with the application components 

is in line with the common SCA. Each SCA application 

component contains several implementations of the 

component. Using OpenCL means each SCA component 

implementation will come with kernel binaries targeting a 

specific compute device. The deployment of an SCA 

application lead to the choosing of the right implementations 

of each component and each kernels based on the hardware 

available in the SCA platform.  

 

 However, with the proper driver support, kernels can be 

built on the fly at the moment the SCA application gets 

deployed. In such a case, the application is packaged with 

the kernels either in source code format or in an intermediate 

binary format which is portable across different compute 

devices. Indeed, OpenCL supports a format called Standard 

Portable Intermediate Representation (SPIR) for kernel 

binaries. SPIR is cross-platform and designed for 

heterogeneous parallel computing. It is based on LLVM IR 

[12]. 

 

 Using this approach reduces the requirement for having 

several implementations of an SCA component and OpenCL 

kernels. If the SCA platform contains one GPP and several 

OpenCL compute devices, there is no need to prebuild all 

the kernels. The kernels can be built on the fly based on the 

selected compute devices. This approach also future-proves 

the SCA application since it supports any compute device 

that might be integrated in the future. In short, it makes the 

SCA application more portable to different SCA platforms 

that use the same GPP but different OpenCL compute 

devices. However, using this approach incurs a runtime cost 

during the deployment of applications since the OpenCL 

builder is invoked on the fly.  

 

 To evaluate the impact of selecting an approach over 

another, measurements have been made regarding the time it 

takes to create a kernel from source code, SPIR format, and 

from native binaries prebuilt for specific compute devices. 

The tests have been executed ten times for each file format 

and file size (i.e. small vs large) of the source code. To 

represent a small source file, we used a kernel routine 

implemented in 16 lines of code (LOC). We used a routine 

implemented with 398 LOC to represent a large source file. 

The SPIR binaries were created using the options “-x spir -

spir-std=1.2” with the OpenCL compiler.  Table 1 shows the 

average times it takes to create a kernel that is ready to be 

executed starting with above-mentioned 3 types of kernel 

files. 
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Table 1. Average time in µs to create a kernel based on 

source code file size. 

 Small Large 

Format in kernel file CPU GPU CPU GPU 

Source code 13149 391 142089 447 

Native binary 968 378 4381 396 

Binary in SPIR 923 -- 4187 -- 

 

 As it can be seen from Table 1, creating a kernel from 

source code is surprisingly fast. Creating a kernel involves 

compiling and linking the kernel source code for different 

compute devices. For a CPU compute device, it takes 

approximately 13 to 142ms to create a kernel from source 

code. Doing the same for the GPU compute device only 

takes 0.3 to 0.5ms. Note that creating kernels only happens 

once each time an application is launched, no matter how 

long the application runs for. The reason it takes a different 

amount of time to create kernels for different compute 

devices is that different tool chains are used. Another 

surprising result is that creating a kernel for a GPU compute 

device takes about the same time whether from source code 

or from native binary. For a CPU compute device, creating a 

kernel from binary SPIR format takes about the same time as 

creating from native binary, even slightly faster. Since SPIR 

binaries are portable, this format represent the best solution 

for use with the SCA. The SPIR format also offers the side 

benefit of not exposing the kernel source code on the 

deployment platform.  

 

5.2 Buffer Size 

 

As mentioned before, the input data must be moved from the 

host memory to the target compute device memory on which 

a kernel will be executed. Similarly, the output data must be 

moved back to the host memory after the execution of the 

kernel. The time spent copying data affects the overall time 

required for OpenCL kernels to process data. Experiments 

have been conducted to measure the impact of copying of 

data across the bus that connects the host and the target 

devices.  

 

 The experiments used various buffer sizes, from 4KB 

for the size of small buffers to 3.125 MB for the size of 

large buffers (800 times the size of the small buffers). The 

measurements were averaged over twenty tests in each 

direction. Table 2 provides the averages in microseconds 

and illustrates the difference in performance between 

different types of compute devices. It also quantifies that the 

cumulative cost of copying data across memory types can be 

significant. Figure 3 shows the plotting of these numbers. 

NordiaSoft is currently investigating, with good success, 

different approaches to reduce the costs of moving data. 

Results to be published in a follow up paper. 

 

Table 2. Average time to copy buffers. 

Buffer 

size (KB) 

CPU GPU 

H2D 

(µs) 

D2H 

(µs) 

H2D 

(µs) 

D2H 

(µs) 

4 5 9 10 12 

32 7 12 19 19 

320 32 42 101 104 

640 67 75 191 312 

960 112 105 406 464 

1280 155 153 468 614 

1600 193 161 520 694 

1920 247 186 577 814 

2240 274 209 653 903 

2560 333 234 706 1020 

2880 608 296 746 1194 

3200 694 372 794 1307 
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Figure 3. Average time to copy buffers from H2D and D2H.

6. CONCLUSION 

 

OpenCL is effective to increase the portability of SCA 

applications across heterogeneous platforms. It allows 

application components to be portable between GPPs, 

DSPs, GPUs, and FPGAs. In short, OpenCL addresses 

directly the number one innovation from the top 10 most 

wanted innovations as defined the Wireless Innovation 

Forum. The paper describes how the SCA can benefit 

from OpenCL.  It explains how OpenCL SCA components 

can support multiple compute devices with a single 

implementation of the signal processing source code.  

 

 The paper underlined the fact that portability for 

signal processing functions can be achieved at the source 

code level and at the binary level which offers more 

protection for intellectual property. Metrics have been 

presented to illustrate how fast it is to instantiate OpenCL 

kernels. The paper also provided metrics that show the 

performances associated with moving data across different 

types of memory.  

 

 A simple approach to support OpenCL with SCA has 

been presented. It described how an SCA Device must 

advertise its capabilities to execute OpenCL kernels. It 

also explained how SCA application components can 

integrate OpenCL kernels. We have identified some areas 

of potential improvement for the SCA specification to 

better support OpenCL.  

 

 Finally, the paper showed how the copy of data 

between the OpenCL host processor and a target compute 

device can potentially affect real-time performances. More 

research can be performed on this topic to alleviate the 

issue. 
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